
1/13

Solving Reachability Problems with SAT

April 13, 2023



2/13

Outline

Modeling Systems with Boolean Formulae
Kripke Structure
Boolean (Propositional) Encoding of States

Bounded Model Checking
Basic Ideas
A Maze Solving Game



3/13

Kripke Structure

In model checking we typically model our target entity with Kripke
structures.

Definition (Kripke Structure)

A Kripke structure M is a five-tuple M = (S , S0,R,AP, L)

1. S is a set of states

2. S0 ⊆ S is the set of initial states

3. R ⊆ is a transition relation

4. AP is the set of atomic propositions

5. L → 2AP is a function that labels each state with the set of
those atomic propositions that are true in that state



4/13

Kripke Structure (continued)

For example, this Kripke structure has:

1. S = {s1, s2, s3, s4}, counting from left to right

2. S0 = s1

3. R = {(s1, s2), (s2, s3), (s2, s4), (s3, s1), (s4, s4)}
4. AP = {a, b}
5. L(x) = a, for x ∈ {s1, s2, s3}, L(x) = b for x ∈ {s4}



5/13

Definition of Reachability Problem

▶ Given a Kripke Structure M, can we reach some state si in
some n ∈ N steps of transition from a initial state s0 ∈ S0?



6/13

Boolean (Propositional) Encoding of States

Our objective: Encode a reachability problem on Kripke structure
to a boolean formula whose satisfiability can be tested by a SAT
solver.

▶ For each state, assign a boolean word to them

▶ For example, s1 = 00, s2 = 01 and so on

▶ For each bit in the word, create a variable vi
▶ Now we can represent the states with bits, e.g.

s1 := ¬v0 ∧ ¬v1 and s2 := ¬v0 ∧ v1



7/13

Boolean (Propositional) Encoding of States (continued)

▶ We denote the next state by appending a apostrophe symbol
to the original variable name, for example, v ′0 and v ′1

▶ For initial state S1, we can encode the initial state set S0 as a
boolean function S0(v0, v1) = ¬v0 ∧ v1

▶ Every transition (arrow) can be represented by a formula in
the form of Ts1→s2 = s1 ∧ s2 = ¬v0 ∧ ¬v1 ∧ ¬v ′0 ∧ v ′1

▶ Transition function can be represented by disjunction of
individual transitions, e.g.
R(v0, v1, v

′
0, v

′
1) = Ts1→s2 ∨ Ts2→s2 ∨ Ts2→s4 ∨ Ts3→s1 ∨ Ts4→s4



8/13

Modeling a Procedure with Multiple Steps of Transitions

▶ With the previously mentioned method, we can only model a
one-step transition system

▶ But we want to know that whether a state can be reached in
n steps of transition

▶ How do we model more steps?



8/13

Modeling a Procedure with Multiple Steps of Transitions

▶ With the previously mentioned method, we can only model a
one-step transition system

▶ But we want to know that whether a state can be reached in
n steps of transition

▶ How do we model more steps?

▶ Answer: We can make multiple copies of the transition
function!



9/13

Bounded Model Checking

▶ For a two step transition system, we only have one copy of the
transition function

▶ Recall that S0 ∧ R(v0, v1, v
′
0, v

′
1) can represent the states that

can be reached in one step of transition

▶ To make our formula shorter, we rewrite R(v0, v1, v
′
0, v

′
1) as

R(V ,V ′)

▶ R(V ,V ′) is a word-level modeling of the transition function
and denotes the transition from first step (V ) to the second
step (V ′)



10/13

Bounded Model Checking (continued)

▶ Now we can make copies of the transition system by feeding
different V values to the function R

▶ e.g. for three steps we can do
S0 ∧ R(V ,V ′) ∧ R(V ′,V ′′) ∧ R(V ′′,V ′′′)

▶ If we want to know whether we can reach some state Sf in 3
steps, we can append sf to the end of the conjunction:
S0 ∧ R(V ,V ′) ∧ R(V ′,V ′′) ∧ R(V ′′,V ′′′) ∧ Sf

▶ Generalize to n steps: S0 ∧R(V0,V1)∧ · · · ∧R(Vn−1,Vn)∧ Sf
▶ If SAT, then the model returned by SAT solver is the

complete trace of transition

▶ If UNSAT, then Sf can not be reached in n steps



11/13

Modeling a Maze Solving Game

We want to find a path from upper-left corner to the bottom-right
corner of the maze.

0001101010

1000000000

1001110001

0000001100

1111101100

0010000010

0001010110

0110001110

0100110010



12/13

Encoding Each State of a Maze

▶ For a n × n maze, obviously we have n2 states

▶ An easiest way to encode states is to assign each one of them
a natural number

▶ e.g. for a state on row i and column j, assign value i · n + j to
it

▶ We define the numbering function N(i , j) = i · n + j



13/13

Encoding the Transition Function

▶ For each maze cell, there are at most four states that can be
reached (left, right, up, down)

▶ We can describe two connected state m, n by adding a clause
N(im, jm) ∧ N(in, jn) where im, jm and in, jn are the coordinate
of m and n accordingly

▶ The transition function will be:
R(i , j , i ′, j ′) =

∧
m,n∈All Adjacent States N(im, jm) ∧ N(i ′n, j

′
n)


	Modeling Systems with Boolean Formulae
	Kripke Structure
	Boolean (Propositional) Encoding of States

	Bounded Model Checking
	Basic Ideas
	A Maze Solving Game


